Rheology of peptide- and protein-based physical hydrogels: are everyday measurements just scratching the surface?
نویسندگان
چکیده
Rheological characterization of physically crosslinked peptide- and protein-based hydrogels is widely reported in the literature. In this review, we focus on solid injectable hydrogels, which are commonly referred to as 'shear-thinning and rehealing' materials. This class of what sometimes also are called 'yield-stress' materials holds exciting promise for biomedical applications that require well-defined morphological and mechanical properties after delivery to a desired site through a shearing process (e.g., syringe or catheter injection). In addition to the review of recent studies using common rheometric measurements on peptide- and protein-based, physically crosslinked hydrogels, we provide experimentally obtained visual evidence, using a rheo-confocal microscope, of the fracture and subsequent flow of physically crosslinked β-hairpin peptide hydrogels under steady-state shear mimicking commonly conducted experimental conditions using bench-top rheometers. The observed fracture demonstrates that the supposed bulk shear-thinning and rehealing behavior of physical gels can be limited to the yielding of a hydrogel layer close to the shearing surface with the bulk of the hydrogel below experiencing negligible shear. We suggest some measures to be taken while acquiring and interpreting data using bench-top rheometers with a particular focus on physical hydrogels. In particular, the use of confocal-rheometer assembly is intended to inspire studies on yielding behavior of hydrogels perceived as shear-thinning and rehealing materials. A deeper insight into their yielding behavior will lead to the development of yield-stress, injectable, solid biomaterials, and hopefully inspire the design of new shear-thinning and rehealing hydrogels and more thorough physical characterization of such systems. Finally, more examples of bulk fracture in some physical hydrogels based on peptides and proteins are explored in the light of their behavior as yield-stress materials.
منابع مشابه
Mechanical Characteristics of SPG-178 Hydrogels: Optimizing Viscoelastic Properties through Microrheology and Response Surface Methodology
Background: Self-assembling peptides (SApeptides) have growing applications in tissue engineering and regenerative medicine. The application of SApeptide-based hydrogels depends strongly on their viscoelastic properties. Optimizing the properties is of importance in tuning the characteristics of the hydrogels for a variety of applications. Methods: In this study, we employed statistical modelin...
متن کاملPhysicochemical Characteristics and Biomedical Applications of Hydrogels: A Review
Hydrogels are introduced to modem medicine as novel materials suitable for a variety ofbiomedical applications. Studying hydrogels as novel biomaterials has become a fast-developingand exciting research field during the last two decades. These interesting biomaterials have found awide range of application including contact lenses, vehicles for drug delivery and scaffold in tissueengineering and...
متن کاملThe study of Lysozyme adsorption onto 2-hydroxyethylmethacrylates and Silicon Hydrogel Contact Lenses
In order to increase the water content and the oxygen permeability of hydrogels used in themanufacture of contact lenses, the polar monomer Silicon Hydrogel Contact Lenses (SHCL), and 2-hydroxyethyl methacrylate (HEMA) were copolymerized with the hydrogels. Due to the presence ofpolar monomers in the conventional contact lenses, the major component of the human tear,lysozyme is extensively adso...
متن کاملSelenium nanoparticles inclusion into chitosan hydrogels act as a chemical inducer for differentiation of PC12 cells into neuronal cells
Background and Objective: Biomaterials and nanomaterials have generated a great opportunity in regenerative medicine. Neurological disorders can result in permanent and severe derangement in motor and sensory functions. This study was conducted to examine the effects of selenium nanoparticles (Se NPs) as a chemical inducer for differentiation of PC12 cells into sympathetic-like neurons characte...
متن کاملSite-specific, covalent incorporation of Tus, a DNA-binding protein, on ionic-complementary self-assembling peptide hydrogels using transpeptidase Sortase A as a conjugation tool† †Dedicated to the memory of Joachim H. G. Steinke. ‡ ‡Electronic supplementary information (ESI) available: Further experimental data. See DOI: 10.1039/c3sm00131hClick here for additional data file.
The site-specific conjugation of DNA-binding protein (Tus) to self-assembling peptide FEFEFKFKK was demonstrated. Rheology studies and TEM of the corresponding hydrogels (including PNIPAAm-containing systems) showed no significant variation in properties and hydrogel morphology compared to FEFEFKFKK. Critically, we demonstrate that Tus is accessible within the gel network displaying DNA-binding...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology
دوره 7 1 شماره
صفحات -
تاریخ انتشار 2015